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Abstract
The linear dynamics of ion sputtered solids is essential to understanding the evolution of
ordered and disordered surface patterns. We review the existing models of linear dynamics and
point out qualitative discrepancies between theory and experimental observations that
characterize the linear regime. In particular, we emphasize the importance of experimental and
theoretical analysis of bifurcation points: certain values of control parameters such as ion beam
angle or energy, where flat surfaces undergo a transition from stability to instability.

1. Introduction

The spontaneous evolution of topographic patterns on solid
surfaces due to sputtering by a uniform ion beam, a
phenomenon which was discovered by Navez et al in 1962 [1],
has attracted a high level of interest during the last two decades.
As several papers in the issue describe, for a variety of surface
types and system parameters (e.g. ion type and energy, beam
angle and temperature, substrate type), the evolving surface
patterns can take the form of ordered or disordered arrays of
one-dimensional ripples or two-dimensional structure of dots,
whose typical length scales are 102±1 nm [1–18]. The large
separation of scales between the patterns and the characteristic
penetration depth of ions into a solid surface (typically at
least an order of magnitude) suggests that evolution of surface
morphology can be described as a dynamics of continuous
media. In such a formalism [19], pattern formation is attributed
to the instability of a homogeneously eroding surface to the
linear growth of spatially varying (Fourier) modes, and to the
nonlinear interaction between these modes.

The potential use of this method for nanoscale patterning
at sub-lithographic length scales has stimulated interest in
the control of this phenomenon. Developing such control
requires, however, a quantitative nonlinear theory that enables
prediction of the type of surface pattern that emerges for a
given set of system parameters. Despite significant theoretical
effort over the last couple of decades, this goal has not
been accomplished yet. Moreover, we will argue below that
current experimental data indicate that even for the simplest,
prototypical case of isotropic, elemental systems (which
lack the potentially confounding effects of crystallographic
anisotropy and differential elemental sputtering), we do not

yet have a good understanding of even the linear part of the
dynamics, which governs the initial formation of the instability.
The exploding collection of nonlinear theoretical approaches
reduces, in the linear dynamics, to only a handful. We will
review here our approach to classifying the possible types
of linear dynamics and will briefly comment on the possible
consequences of our studies for the potential development of a
nonlinear theory of pattern formation due to ion sputtering.

A widely used starting point for linear stability analysis
was introduced by Bradley and Harper (BH) in 1988 [20].
They built on previous theoretical work of Sigmund [21, 22],
who modeled the nuclear energy deposition density (and
hence the local erosion rate) as a Gaussian ellipsoid beneath
the surface. Sigmund thereby showed that such a response
implies a curvature-dependent sputter yield (atoms out per
incident ion), and therefore to a faster erosion of concave
surface regions than of convex ones. Assuming an ion beam
propagating downward along the ẑ direction, Bradley and
Harper showed that, when Sigmund’s response is combined
with surface diffusion-mediated morphological relaxation3,
the linear dynamics for surface height h(x, t) of an initially
homogeneous surface h = bx is

∂h

∂ t
= −I + {−I ′∂x + Sx∂xx + Sy∂yy − B̃∇4}h, (1)

where the coefficients Sx,y(b) are derived from Sigmund’s
Gaussian response function and their negative values reflect
the instability mechanism described above. The coefficient
B̃ = (1+b2)−3/2 B , where B is a material parameter containing

3 For amorphous materials, ion-stimulated viscous flow can be a similarly
stabilizing influence [9].
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Figure 1. (a) Plot of sputter yield curve I (θ), normalized by I (0), ((b), (c)) plots of Sx(θ) and Sy(θ), normalized by |Sx(0)| = |Sy(0)|. The
parameters used are: a = 1.5 nm, σ = 0.9 nm and μ = 0.5 nm.

the surface free energy and other material parameters
characterizing the kinetics of surface relaxation and I (b)

is Sigmund’s sputter yield (I ′ ≡ dI/db). For a given
beam angle (i.e. given b) the early evolution of surface
morphology is dominated by the fastest growing Fourier
modes, and the characteristic pattern length scale is thus√

8π2 B̃/(− min(Sy, Sx)) (assuming at least one of the two BH

coefficients Sx , Sy is negative). We denote by θ = tan−1(b)

the angle between the beam direction (−ẑ) and the normal
to the flat surface n̂ (0 � θ � π/2), and x̂ is the axis
perpendicular to the beam direction in the n̂–ẑ plane4. The
behavior of Sx(θ) and Sy(θ) for characteristic parameter values
is shown in figure 1. Bradley–Harper theory gives rise to
two central predictions: (i) below a crossover angle θcross,
Sx < Sy < 0, implying that for sufficiently small beam
angles the emerging pattern is dominated by a parallel mode
(i.e. wavevector parallel to the projected ion beam direction
along the surface) and (ii) Sy < 0 for all θ , implying
instability of flat surfaces to the growth of perpendicular modes
(i.e. wavevector perpendicular to ion beam) at all incidence
angles. The derivation of nonlinear terms that should be
added to the linear BH equation to describe the growth and
saturation of pattern amplitude from this model was carried out
by Makeev et al [23, 24], who expanded Sigmund’s Gaussian
ellipsoid model to higher order in surface height derivative, and
arrived at a Kuramoto–Sivashinsky type equation [19] for the
surface evolution.

Although Bradley–Harper theory successfully explains
some features of many experiments (e.g. exponential growth
and temperature dependence of pattern amplitude [25]) a
growing number of experimental observations [14, 26–29]
seem to contradict the central predictions of this theory.
Some experiments exhibit dominance of perpendicular rather
than parallel mode ripples mode at small beam angles, and
even more dramatically—beam angle regimes were found
where roughness is damped out and flat surfaces are stable
and undergo homogeneous erosion. These discrepancies
are associated with the linear stability of flat surfaces and

4 We find our coordinate system more suitable for algebraic manipulations
than the one typically used in previous studies, where ẑ is taken to be normal
to the (unperturbed) surface and x̂ is tangential to it. In the linear dynamics
discussed in this paper, the transformation from our coordinate system to this
one is obtained by replacing ∂x → √

1 + b2∂x and ∂h/∂t → √
1 + b2∂h/∂t .

thus indicate that BH linear dynamics are incomplete. (We
do not discuss here experiments indicating problems with
nonlinear extensions of BH theory [3, 4, 34].) Obviously,
linear dynamics is an essential cornerstone for the development
of a nonlinear pattern formation theory [19]. These
observed discrepancies have thus motivated us to search
for a general form of linear dynamics that can capture all
existing experimental observations associated with the linear
stability and instability and the early stage of pattern growth.
The only constraints we suggest to impose on such general
linear dynamics are that all its terms must be associated
with testable (at least in principle) physical mechanisms,
and that its predictions agree with robust features of ion
sputtering experiments, most notably the characteristic angular
dependence of the sputter yield (see figures 1 and 2).

From a mathematical point of view, the possible dynamics
that account for the observed deviations from the BH
predictions form two classes [35]: (i) modifications of
coefficients in the BH equation (1), which allow less restrictive
dependence on control parameters (such as beam angle or ion
energy), and (ii) dynamics which require other linear operators
to be added to the BH equation. Physical mechanisms
that lead to linear dynamics of class (i) could be associated
with local surface responses to ion sputtering which are not
of Sigmund’s form, or with other local processes such as
induced mass flow on the sputtered surface. By contrast,
the only examples we have identified that lead to linear
dynamics of class (ii) are associated with nonlocal processes,
which are described by integral operators whose range is
much larger than the pattern wavelength. Moreover, we
argue that experimental observations support linear dynamics
of class (ii). We note that several recent works have
suggested various modifications of the BH equation and
its nonlinear extensions [23, 30, 31]. These works were
motivated, however, by nonlinear phenomena, most notably
by the observation of highly ordered steady patterns [4, 7].
Although a complete theory for ion-sputtering-induced pattern
formation will necessarily include nonlinear components, we
believe that an essential prerequisite for such a theory is the
understanding of the relevant physical mechanisms in the linear
regime. Therefore the analysis and experimental observations
discussed here are associated solely with the behavior in this
regime. We point out very briefly how understanding of the

2



J. Phys.: Condens. Matter 21 (2009) 224019 B Davidovitch et al

Figure 2. Normalized yield curve and BH coefficients Sx , Sy for two sets of parameters of the two-Gaussians model, equation (7). The
parameters a1, σ1, μ1 are the ‘Sigmund parameters’ taken as in figure 1 and the same normalization factors are used. The new parameters are:
top row: α = 0.03; a2 = 0.5 nm, σ2 = 0.5 nm and μ2 = 1 nm; bottom row: α = 0.03, a2 = 0.9 nm, σ2 = 0.2 nm and μ2 = 1.5 nm.

linear dynamics may guide our analysis of the nonlinear pattern
formation regime.

This paper is organized as follows: in section 2 we
write a very general form for the surface dynamics and use
it to explain the assumptions underlying the BH theory. We
review the central predictions of this theory and discuss their
robustness with respect to variations in the form of Sigmund
response function. Experimental observations that disagree
with the BH predictions are mentioned. In section 3 we discuss
physically motivated mechanisms for linear theories of class
(i), which preserve the functional form of the BH equation.
We show that, although they can potentially explain some of
these observations, such theories do not suffice to explain all
deviations from the BH predictions in the linear regime. In
section 4 we explain why experimental observations imply
terms that must be added to the BH equations and point out two
examples of these terms containing linear integral operators,
hinting on the nonlocal nature of the physical mechanisms that
they represent. In section 5 we conclude and discuss directions
for future studies inspired by our approach.

2. Bradley–Harper theory and purely erosive
response

The most general evolution equation based on the accumula-
tion of local responses to ion impacts is [32]

∂h(x, t)

∂ t
=

∫
dx′ Jion(x′)�[x − x′, hx(x, t), hy(x, t),

hxx (x, t), hyy(x, t), hxy(x, t), . . .] (2)

where x = (x, y), Jion(x′) is the ion flux at x′, subscripts x
and y denote partial derivatives and the kernel �[x − x′, . . .],

representing the change in height at x due to an ion impact
at x′, is expected to decay smoothly to zero at large distances
|x − x′|. Assuming radial symmetry about the ion track and
no explicit dependence on the surface slope and curvature, the
simplest form of kernel that describes local response is

�[x − x′, . . .] = �h(r, z) = −Ae−g(r)− f (z) (3)

where r = √
(x − x ′)2 + (y − y ′)2, z = h(x, y) − h(x ′, y ′)

and A is a length that depends on parameters such as ion
energy, and ion and target mass. Sigmund’s Gaussian ellipsoid
response [22] is a particular case of equation (3), with

f (z) = 1

2σ 2
(z − a)2; g(r) = 1

2μ2
r 2 (4)

where a is the average penetration depth of the ion, and σ

and μ are lengths characterizing the ranges of response in
directions parallel and perpendicular to ẑ, respectively.

Bradley and Harper [20] assumed Sigmund’s response (4)
and carried out an expansion of h(x, y, t) around the
homogeneously flat surface h = bx − I t (where I is
the average vertical erosion rate). Let us notice already
that a similar expansion can be pursued whenever a kernel
� in equation (2) is assumed to be characterized by
scales (e.g. a, μ, σ in equation (4)) much smaller than the
characteristic scales of the evolving surface patterns. The BH
analysis yields equation (1) with the terms Sx hxx and Syhyy

on its RHS. The small parameter of such an expansion is
proportional to the ratio between a characteristic length of
Sigmund’s response (e.g. penetration depth a) and a typical
wavelength of the evolving pattern. This implies two important
consequences: first—the approach is valid only if the unstable

3
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wavelength is indeed sufficiently larger than a (or some other
length characterizing the local response). Second—linear
terms in this expansion that are proportional to higher-order
derivatives of h can be neglected (with respect to Sx hxx and
Syhyy). In terms of Sigmund’s parameters, the sputter yield
and BH coefficients are given by the formulae

I (b) = α

∫ ∞

−∞
dy

∫ ∞

−∞
dx e−ρb(x,y)

Sy(b) = α

∫ ∞

−∞
dy

∫ ∞

−∞
dx e−ρb(x,y) f ′(bx)y2

Sx (b) = α

∫ ∞

−∞
dy

∫ ∞

−∞
dx e−ρb(x,y) f ′(bx)x2

(5)

where ρb(x, y) = g(
√

x2 + y2) + f (bx) and α is a constant.
Characteristic plots of these coefficients (as a function of slope
b) are given in figure 1. Analysis of these expressions yields
two central predictions: (i) the BH coefficient Sy , associated
with the dynamics of Fourier modes h(x, y, t) = bx − I t +
eRq t cos(qy) is negative for all values of b, implying Rq > 0
and hence instability of the sputtered surface to growth of
perpendicular mode ripples. This consequence applies for all
values of Sigmund’s parameters a, σ, μ. (ii) Assuming the
Gaussian ellipsoid response shape, with σ > μ (corresponding
to a broader distribution of the nuclear energy deposition along
its trajectory direction than in the perpendicular directions,
on average), one finds Sx < Sy < 0 for sufficiently small
beam angles (i.e. small slope b). The wavelength of the
unstable modes (associated with negativity of Sy and of Sx for
sufficiently small b) is determined by a relaxation mechanism.
BH assumed a suggested Mullins–Herring surface diffusion-
mediated relaxation [33], as represented by the term −B̃∇4h
on the RHS of equation (1). With typical values of B̃
and Sigmund’s parameters of order ∼1 nm (for typical ion
energies of order 1 keV), one finds a characteristic dominant

(fastest growing) pattern wavelength
√

8π2 B̃/(− min(Sy, Sx))

of the order of tens to hundreds of nm, in agreement
with experimental observations. As discussed in section 1,
these predictions have been contradicted by some recent
experiments.

The above review of the BH approach suggests a natural
anchor for modifications of the linear theory: the response
function � in equation (2). Although Sigmund’s Gaussian
ellipsoidal response is plausible and has been widely accepted,
it is important to remember that the ‘microscopic’ coefficients
a, σ, μ, and moreover the Gaussian ellipsoidal shape of the
surface response, are not measured directly in experiments.
The strongest experimental evidence in favor of Sigmund’s
response is the angular dependence of the sputter yield I (b),
whose qualitative shape (up to large slopes b > 1) as plotted in
figure 1 (I (0) > 0, I ′(0) = 0, and the monotonic increase with
b > 0) have been verified in many experiments. In contrast,
the BH coefficients Sx , Sy are not measured directly in most
experiments.

Assuming another non-Sigmund type of local response
�, the BH expansion as described above can be repeated,
and modified coefficients Seff

x,y can be computed. As long

as the assumed response � is local, namely its characteristic
scales are much smaller than the evolving pattern wavelength,
such a modification preserves the linear functional form of
the BH equation (1). Our first question is thus: which of the
BH predictions are robust? i.e. which predictions remain
valid under a modification of the local kernel � that does not
significantly affect the sputter yield I (b)?

Results from our investigation of this problem [35] are
presented in the rest of this section and in the next one. Here
we discuss a natural generalization of Sigmund’s response to
functions of the form (3) where the functions f (z) and g(r) are
not necessarily quadratic, as assumed in Sigmund’s form (4).
Numerical evidence for the plausibility of such a generalized
form comes from the work of Feix et al [30], who used
molecular dynamics methods to simulate the energy deposited
by an impinging ion. Their numerical simulations yielded a
‘toroidal’ response function of the form (3) with g(r) + f (z)
attaining its minimal value (thereby maximizing the deposited
energy density) along a ring (z = 0, r = r0 > 0) rather than
at the ‘average ion stopping point’ (z = 0, r = 0). Motivated
by this result, we repeated the BH expansion, using for � the
form (3) with non-quadratic functions g(r) and f (z) [35]. We
thus arrived at modified BH coefficients Seff

x , Seff
y , such that the

integral on the RHS of equation (2) is approximated by the
differential operators: Seff

x hxx + Seff
y hyy . We studied general

smooth functions f (z) + g(r) that assume minima at a single
point (z = 0, r = 0) and along a curve (z = 0, r > 0). In
order to compute the modified BH coefficients Seff

x,y we used the
saddle point technique. Our detailed calculations are presented
in section 3 of [35]. A central result of our analysis is that all
such response functions give rise to Seff

y (b) < 0, and therefore
to the instability of flat surfaces with respect to amplification
of perpendicular modes, for all beam angles. Furthermore,
although the calculations become increasingly cumbersome
as more complicated forms of the functions g(r), f (z) are
considered, our result suggests that Seff

y (b) < 0 for all beam
angles, as long as the surface response to local ion � is purely
erosive, namely it gives rise to net erosion at all surface points.
Such a response can be represented by a function of the type (3)
or by the more general form

�h(r, z) = −
∞∑
j=1

A j e
−g j (r)− f j (z), (6)

with coefficients A j > 05. We may thus conclude that the BH
prediction of the instability of a flat surface at any beam angle
is fairly robust with respect to modifications of the response
function to ion impact that are erosive everywhere on the
surface. Motivated by this conclusion, we went on to explore
the robustness of the instability of flat surfaces when local
responses, which are not everywhere erosive, are considered.
This issue is discussed in section 3.

Another important conclusion is that the BH prediction
of the dominance of parallel modes over perpendicular modes
at small beam angles does not seem to be as robust as the
instability prediction. This can be easily demonstrated by

5 Notice that the coefficients {A j } are not unique because the functions
e−g j (r)− f j (z) do not form a basis.
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considering, for example, a Gaussian ellipsoid with μ > σ .
Such a response is obviously erosive everywhere, yet it gives
rise to the dominance of perpendicular modes at small beam
angles.

3. Modifications of BH coefficients

The conclusions of our work discussed in the previous section
are that a purely erosive, local surface response to ion impact
of the form (2) is contradicted by experimental observations
of a stable flat surface over a range of incident angles.
In this section we discuss surface dynamics of the general
type (2), where the assumption that the response is of the
purely erosive type (3) or (6) with {A j > 0} is relaxed.
Our discussion is limited to two representative response
types, whose corresponding sputter yield is similar to the one
obtained for Sigmund’s response, but which may give rise to
beam angles for which flat surfaces are stable.

3.1. Response that is not erosive everywhere

Several recent studies demonstrated that, under certain
circumstances, it is possible that a crater forms at the impact
point and is surrounded by a rim elevated from the original
surface [5, 8, 36, 37]. This behavior, where �h > 0 in the rim,
is qualitatively different from the erosive response functions
described in (3). We then ask: is the BH prediction of the
instability of a flat surface at all beam angles robust when such
a response is considered?

To carry out this analysis we considered response
functions of the form (6) where some of the coefficients A j are
negative and some are positive. Whereas arbitrary choices of
the coefficients A j give rise to a yield curve I (b) substantially
different from the shape depicted in figure 1 (and even to
overall deposition rather than erosion of the surface), it is
possible to show that there exist choices of coefficients {A j}
which do preserve the yield curve closely. It is this class of
coefficients we are interested in. Focusing for simplicity on
a response function that can be approximated as the sum of
two Gaussian ellipsoids with positive and negative coefficients,
respectively:

�h(r, z) = −A[e−r2/2μ2
1−(z−a1)

2/2σ 2
1 − βe−r2/2μ2

2−(z−a2)
2/2σ 2

2 ],
(7)

where A, β > 0, we showed [35] that if β < β∗(μ1,2, σ1,2)

the yield curve is not significantly modified from the form
predicted by Sigmund’s response, to within experimental error,
where

β∗ = (μ1/μ2)
2ea2

2 /(2σ 2
2 )−a2

1/(2σ 2
1 ). (8)

Moreover, we showed that, although the condition (8)
generally implies a small ratio between the rim and crater
amplitude, it is possible to find parameter regimes where
Seff

y (b) > 0 (i.e. stability to perpendicular modes) at some
intervals of the slope b, unlike the case for response functions
discussed in the previous section [35]. In particular, one
can find parameter regimes where β < β∗ (thus the yield
curve retains its characteristic shape) and Seff

x (b), Seff
y (b) are

both positive over various intervals of the slope b. A yield

curve I (b), and modified BH coefficients Seff
x (b), Seff

y (b) for
two response functions of the type (7) with representative
sets of parameters μ1,2, σ1,2, σ are plotted in figure 2. While
both give rise to essentially identical I (b) (whose variation
from the shape predicted by Sigmund’s response, obtained
by β = 0, is unnoticeable), the modified BH coefficients
Seff

x (b), Seff
y (b) are markedly different from the shape predicted

by Sigmund. Notably, regimes of beam angle (i.e. surface
slope) where the flat surface is stable (i.e. both Seff

x (b) > 0 and
Seff

y (b) > 0) can be obtained for small beam angles or even for
intermediate values of beam angles, in qualitative agreement
with the experiments of [14] and [27]. This result demonstrates
a very significant conclusion: small changes in the shape of
the surface response of a single ion can completely change the
stability characteristics of a flat surface from BH predictions,
but yet lead to an experimentally indistinguishable sputter yield
curve. Further analysis will require a microscopic theory
for sputtering processes which are not erosive everywhere.
Alternatively, comparison with atomistic simulations [37] may
allow extraction of effective parameters such as β, a1,2, σ1,2

and μ1,2 in equation (7).

3.2. Induced surface currents

Another possible type of local response that qualitatively
modifies the BH coefficients but not the functional form of
the BH equation (1) is related to surface currents induced
by ion impact. The existence of such surface currents was
conjectured by Carter and Vishnyakov [26], who associated
them with an average forward motion of recoils parallel to
the ion direction before coming to rest. Recently, this effect
was observed by Moseler et al [38] in MD simulations in the
study of the ion-enhanced smoothing of diamond-like carbon
surfaces bombarded by low-energy (30–150 eV) carbon ions
at near-normal incidence. These simulations found that the
average net effect of each ion impact is a displacement along
the surface that is proportional to θ for small beam angle θ .
Induced surface currents also appear to be important for the
stability of crystalline surfaces under growth and erosion [39].
The mechanisms of [26] and [38] are somewhat different:
the former, developed to model the response to high-energy
ions, assumes volume transport in the collision cascade with
a component parallel to the surface that yields a net current,
whereas the latter seems to be a low-energy effect where a
true surface current is induced. However, in both cases an
explicit dependence on the angle of incidence is apparent and
phenomenologically they appear virtually indistinguishable.

Such induced surface currents can be modeled using a
local response function (3), but with an important difference
from the analysis described so far in the above sections. The
response functions (3) or (6) do not depend explicitly on the
incidence angle and are fully characterized by considering
normal incidence (b = 0). For such functions the dependence
of the coefficients I (b), Sx (b) and Sy(b) in equation (1) on
the angle θ = tan−1(b) is purely geometrical, reflecting
the fact that the distribution of values of the ion trajectory
projections on the surface depends on the slope b. In contrast,
local responses � that reflect also induced surface currents are

5
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Figure 3. Schematic plots depicting the transition between stable and unstable surface dynamics for three dispersion relations. (a) Left
column: generalized Bradley–Harper, equation (1), where the transition occurs at Seff,∗ = 0 with diverging wavelength. (b) Middle column:
with Facsko nonlocal ‘damping term’, transition occurs at Seff,∗ < 0 with finite wavelength. (c) Right column: with Asaro–Tiller nonlocal
elastic energy mechanism, transition occurs at Seff,∗ > 0 with finite wavelength. (a) Rq = −Seffq2 − Bq4, (b) Rq = −K − Seffq2 − Bq4, (c)
Rq = −Seffq2 + M|q3 | − Bq4.

expected to depend explicitly on slope and cannot be written
in the b-independent forms (3) or (6). Incorporating induced
surface currents into surface dynamics yields on the RHS of
equation (1) the linear terms νx hxx + νyhyy , where

νx(b) ∝ 1 − b2

(1 + b2)2
(9)

νy(b) ∝ 1

1 + b2
, (10)

and the proportionality coefficients are positive constants
that can depend on surface type, temperature, ion type and
energy [26, 35].

Let us highlight two important points regarding this
analysis. First, surface currents conserve mass and thus do
not affect the sputter yield I (b). Therefore, it is impossible
to confirm or rule out their existence from sputter yield
measurements. Second, although surface currents cannot
be represented by local responses of the form (3) or (6),
their effect on the linear surface dynamics is similar and is
captured through terms proportional to second-order partial
derivatives. Incorporation of induced surface currents into ion
sputtered surface dynamics thus preserves the functional form
of equation (1) and amounts to adding to the BH coefficients
Seff

x , Seff
y terms of the same order with coefficients νx(b), νy(b),

respectively. The possible effect of surface currents on the
stability of flat surfaces is qualitatively similar to the schematic
plot in the top row of figure 2. If the induced surface current
mechanism is sufficiently strong, one should observe a regime
of stable flat surfaces at small beam angles. Although this
mechanism could be related to the observation of flat surfaces
in experiments [26], stability of flat surfaces at a range of
intermediate beam angles, reported in [14] and [27] seems to
imply other mechanisms not included in this approach, such as

response functions that are not everywhere erosive (discussed
at the beginning of this section) and possibly other processes
as described in the following sections.

4. Finite wavelength and nonlocal processes

There are two common features to the mechanisms described
in the previous two sections. First, they are all associated
with processes whose effect on the surface dynamics can be
described by a local response � in equation (2), which depends
only on the local topography of the surface point that undergoes
ion impact. Second, they all give rise to surface dynamics of
the form (1), whose possible bifurcations—transitions between
the stability and instability of flat surfaces—are associated with
vanishing amplitude and divergence of the pattern wavelength
at certain beam angles. This is depicted in the left column
of figure 3, where we schematically plot the growth rate Rq

of Fourier modes with wavenumber q for values of b above
bifurcation (where there exist unstable modes with Rq > 0),
at bifurcation, and below bifurcation (where all modes are
decaying Rq < 0). Mathematically, this is reflected through
the fact that bifurcation corresponds to parameter values where
the maximal growth rate (over all Fourier modes) is vanishing:
max(Rq) = 0. Because the dispersion relation from (1) but
with S replaced by Seff is Rq = −Seff

j q2−Bq4 (where i = x, y,
for parallel or perpendicular modes, respectively, and where
Seff corresponds to any modifications of the BH coefficients
associated with local response as described in section 3),
we see that bifurcation described by surface dynamics (1)
implies that the typical length scale (proportional to the inverse
wavenumber of the most unstable mode) must diverge.

While the stability of flat surfaces at various regimes of
beam angles has been noticed in the past [26], there exists
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only a handful of reports in the literature on wavelength
measurements near bifurcation. While it is hard to draw
general conclusions from only a few existing results, there
is a substantial evidence that at least some bifurcation points
in the dynamics of ion sputtered surfaces are characterized
by finite rather than diverging wavelength [27–29]. This
observation, together with the above argument, suggest that
linear surface dynamics is not fully described by an equation
of the form (2), but is rather influenced by nonlocal processes,
whose characteristic spatial range is not necessarily smaller
than the scale of the emerging pattern. General conditions
under which this assertion applies are listed in [35]. Here we
will demonstrate this principle through two examples.

4.1. Facsko ‘damping’ term

The schematic plots in the middle and right columns of
figure 3 demonstrate the qualitative effect of such additional
mechanisms on surface dynamics near bifurcation. The middle
column describes a bifurcation associated with variation of a
modified BH coefficient Seff = Seff

x through the variation of a
control parameter (e.g. beam angle or ion energy), where the
growth rate Rq is assumed to be dominated by

Rq = −K − Seffq2 − B̃q4 (11)

and for simplicity we assume the unstable mode is along
the x direction. The center column of figure 3 reflects the
fact that the equation max{Rq} = 0, which represents the
bifurcation point, selects a most unstable wavenumber |q| > 0
as bifurcation is approached. To understand why equation (11)
reflects a nonlocal process, notice that the constant −K on
its RHS correspond to a ‘damping’ linear term ∂h/∂ t =
−K h(x, t) in the real-space surface dynamics (in addition to
any other terms associated with local response in equation (2)).
However, because the dynamics must be invariant under
translation h → h + c of the surface level (where c is any
constant), such a term must appear as a part of an integral
term −K [h(x, t)−∫

dx′h(x′, t)] that preserves this invariance.
Such a term was proposed by Facsko et al [31] in order to
explain the observations of ordered arrays of ripples and dots
in experiments and simulations [4, 7, 14]. Its physical origin,
hypothesized to be related to nonlocal redeposition, has not
been clarified yet. The emergence of a spatial integral over the
whole sputtered surface associated with this term is an example
of the principle mentioned above: finite wavelength near
bifurcation results from a surface response over scales much
larger than the nanometric scales associated with penetration
depth and energy release of the ion.

4.2. Asaro–Tiller stresses

Another example that yields a bifurcation with finite
wavelength upon variation of a modified BH coefficient Seff

is depicted in the right column of figure 3:

Rq = −Seffq2 + M|q3| − B̃q4, (12)

where again we assume for simplicity that the dominant
wavevector near bifurcation is along the x direction and denote

by Seff = Seff
x the modified BH coefficient. As in the previous

example, bifurcation is represented by max{Rq} = 0, which is
obtained for q = M/2B > 0.

The growth rate Rq in equation (12) stems from adding
a term M|q|3 associated with induced stresses in the solid
to the ‘usual’ terms Seffq2 and −B̃q4 associated with local
response in equation (1). This term is related to the well-
known Asaro–Tiller instability, which develops on surfaces of
solids subject to biaxial stress σ0 [40, 41]. The coefficient
M ∝ σ 2

0 , where σ0 is the induced stress in the near-surface
region due to the ion bombardment. The nonlocal mechanism
associated with the Asaro–Tiller term is less transparent than
the nonlocality associated with the damping term −K in the
growth rate (11) and its derivation is based on elasticity theory,
which we will not discuss here. It suffices to mention that
the term M|q|3 in Rq corresponds to a real-space surface
dynamics ∂h/∂ t arising from a long-range elastic interaction
and dominated by a (spatial) integral over the whole surface,
similar to the integral associated with the damping term −K .
From a mathematical perspective, the dependence of Rq on a
nonanalytic function of q (here |q|3) indicates that this term is
not related to a local (i.e. differential) operator such as ∇3, but
rather to some linear integral of h(x, t).

Although the physical mechanism underlying the growth
rate (12) is much clearer than the global redeposition process
that may give rise to a growth rate of the type (11), preliminary
measurements of the induced stress σ0 (hence the coefficient
M in (12)) indicate that M is too small to affect a qualitative
change in the linear dynamics from the shape in figure 3(a)
to the shape in figure 3(b) [42]. Thus, the actual mechanism
underlying nonlocal response, which eventually leads to finite
pattern wavelength at bifurcation, remains unclear.

5. Conclusions and outlook

We described here a theoretical approach for discerning
the general form of the linear dynamics of ion sputtered
surfaces by focusing on the analysis near bifurcation points,
where a flat surface becomes unstable to the formation
of a topographic pattern upon the smooth variation of a
control parameter (e.g. beam angle or energy). Our analysis,
together with recent experimental observations, suggests that
the dynamics are strongly affected by physical processes that
cannot be described as a local response of the surface to
ion impact. This conclusion is arrived at by contrasting our
theoretical observation that local response implies diverging
pattern wavelength at putative bifurcations with experimental
observations that clearly indicate the existence of a bifurcation
without a diverging length scale.

The actual mechanisms required to explain existing data,
however, are still unclear. We showed that several mechanisms
beyond the classical theory of Bradley and Harper can be
relevant in developing a linear dynamics theory that explains
all existing data, but it is quite possible that some of these
mechanisms act simultaneously. For example, observations of
a stable flat surface over various regimes of beam angle can
be related to a local response (2) to ion impact which is not
purely erosive, as described in section 3, but observations of
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finite pattern wavelength near bifurcations seem to reflect the
influence of nonlocal mechanisms on the surface dynamics.
At the current stage, it is hard to conclude which of the
mechanisms outlined in sections 3 and 4 are actually relevant,
because existing models and experimental measurements of
relevant physical parameters are not sufficiently quantitative.
We believe that a prime goal of research in this field is the
development of the general linear dynamics underlying the
early stage of pattern formation. As we described here, the
identification of bifurcation points and a careful analysis of
pattern features in their vicinity is an extremely valuable tool
for that purpose.

Finally, we mention that, although the focus of this
review was on linear dynamics, we expect the outcome of
this study to be an essential cornerstone for the development
of a nonlinear pattern formation theory, which will eventually
allow the prediction of pattern features for a given set of
control parameters. This expectation is based on the universal
properties of weakly nonlinear pattern formation theory: quite
generally [19], knowledge of the linear dynamics and the
associated leading order nonlinearity (often extracted from
symmetry principles) suffices to classify the possible pattern
morphologies near and further away from bifurcation points.
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